TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum.
نویسندگان
چکیده
Cyclical formation and regression of the ovarian corpus luteum is required for reproduction. During luteal regression, the microvasculature of the corpus luteum is extensively disrupted. Prostaglandin F2α, a primary signal for luteal regression, induces the expression of transforming growth factor β1 (TGFB1) in the corpus luteum. This study determined the actions of TGFB1 on microvascular endothelial cells isolated from the bovine corpus luteum (CLENDO cells). We hypothesized that TGFB1 participates in the disruption of the microvasculature during luteal regression. TGFB1 activated the canonical SMAD signaling pathway in CLENDO cells. TGFB1 (1 ng/ml) significantly reduced both basal and fetal-calf-serum-stimulated DNA synthesis, without reducing cell viability. TGFB1 also significantly reduced CLENDO cell transwell migration and disrupted the formation of capillary-like structures when CLENDO cells were plated on Matrigel. By contrast, CLENDO cells plated on fibrillar collagen I gels did not form capillary-like structures and TGFB1 induced cell death. Additionally, TGFB1 caused loss of VE-cadherin from cellular junctions and loss of cell-cell contacts, and increased the permeability of confluent CLENDO cell monolayers. These studies demonstrate that TGFB1 acts directly on CLENDO cells to limit endothelial cell function and suggest that TGFB1 might act in the disassembly of capillaries observed during luteal regression.
منابع مشابه
Microvascular endothelial cells of the corpus luteum
The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and re...
متن کاملO-36: The Role of Galectin-3 in Rat CorpusLuteum Maintenance
Background: Galectin, an animal lectin that recognizes b-galactosides of glycoconjugates, is involved in multiple biological functions such as cell growth, differentiation, apoptosis, signal transduction and angiogenesis. Overexpression of galectin-3 was observed in different tumors which was related to pro-angiogenic activity. In addition, galectin-3 is intensely expressed in corpus luteum (CL...
متن کاملTwo Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization
Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...
متن کاملMechanisms associated with corpus luteum development.
The transition of a preovulatory follicle into a corpus luteum is a complex process involving mechanisms similar to wound healing and tumor formation. The objective of this review is to focus on mechanisms associated with corpus luteum development with specific attention to the follicular lineage of luteal cells, mechanisms associated with luteinization, and neovascular changes during luteal de...
متن کاملUltrastructural Changes of Corpus Luteum after Ovarian Stimulation at Implantation Period
Background: To achieve multiple oocytes for in vitro fertilization, ovulation induction is induced by gonadotropins however, it has several effects on oocytes and embryo quality and endometrium receptivity. The aim of this study was to assess ultrastructural changes of corpus luteum after ovarian induction using human menopausal gonadotropin (HMG) and human chorionic gonadotropin (HCG) during l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 124 Pt 14 شماره
صفحات -
تاریخ انتشار 2011